Effect of ATP synthesis promoters on postischemic myocardial recovery.
نویسندگان
چکیده
The use of cardioplegia during surgically induced ischemia greatly reduces myocardial metabolic requirements. However, adenosine triphosphate (ATP) depletion may occur, resulting in poor functional recovery after ischemia. This study investigated if augmentation of intracellular ATP could be achieved by delivering known ATP synthesis promoters (adenosine and/or phosphate) during cardioplegic arrest, and whether this could enhance myocardial functional and metabolic recovery following ischemia. Isolated, perfused rabbit hearts were subjected to 120 min of hypothermic (34 degrees C) cardioplegia-induced ischemia. Controls received St. Thomas cardioplegia (CTL); remaining hearts received cardioplegia containing 200 microM adenosine (ADO), or 25 microM phosphate (PO4), or both ADO and PO4. Following ischemia and reperfusion, recovery of developed pressure (%DP) and postischemic diastolic stiffness was significantly better in adenosine hearts when compared with control or PO4 hearts. To determine if ADO or PO4 minimized depletion of ATP during ischemia or accelerated synthesis of ATP in the postischemic period, nucleotide levels were obtained before, during, and after ischemia. During ischemia, ATP fell equally in all groups, indicating that ADO and PO4 did not alter ischemia-induced depletion of ATP. However, intracellular adenosine was augmented during ischemia in adenosine-treated hearts. Consequently, during reperfusion, ADO and ADO/PO4 hearts had significantly enhanced ATP levels, suggesting that augmenting myocardial adenosine accelerated synthesis of ATP postischemia. The addition of phosphate, a stimulus for ATP synthesis, did not augment postischemic ATP. In fact, the beneficial effect of adenosine may have been decreased when phosphate was added to adenosine. In conclusion, adenosine but not PO4 augments intracellular ATP by allowing better metabolic repletion following ischemia, thereby improving postischemic myocardial functional recovery.
منابع مشابه
Increased mitochondrial K(ATP) channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics?
Increased resistance to myocardial ischemia in chronically hypoxic immature rabbit hearts is associated with activation of ATP-sensitive K(+) (K(ATP)) channels. We determined whether chronic hypoxia from birth alters the function of the mitochondrial K(ATP) channel. The K(ATP) channel opener bimakalim (1 micromol/L) increased postischemic recovery of left ventricular developed pressure in isola...
متن کاملCardioplegia with adenosine and adenosine triphosphate in the isolated guinea pig heart.
In order to determine the effect of adenosine triphosphate (ATP) and adenosine in cardioplegic solutions, a comparative study has been undertaken in isolated guinea pig hearts using the Langendorff perfusion technique as a model of cardiopulmonary bypass. The hearts (n = 10 in each group) previously being perfused by Krebs-Henseleit solution, were arrested by one of the following cardioplegic s...
متن کاملATP synthesis kinetics and mitochondrial function in the postischemic myocardium as studied by 31P NMR.
The effects of ischemia on mitochondrial function and the unidirectional rate of ATP synthesis (Pi----ATP rate) were studied using a Langendorff-perfused heart preparation and 31P NMR spectroscopy. There was significant postischemic depression of mechanical function assessed as the heart rate pressure product, and the myocardial oxygen consumption rate at a given rate pressure product was eleva...
متن کاملModest actomyosin energy conservation increases myocardial postischemic function.
We have proposed that pharmacological preconditioning, leading to PKC-epsilon activation, in hearts improves postischemic functional recovery through a decrease in actomyosin ATPase activity and subsequent ATP conservation. The purpose of the present study was to determine whether moderate PKC-independent decreases in actomyosin ATPase are sufficient to improve myocardial postischemic function....
متن کاملATP precursor depletion and postischemic myocardial recovery.
Although cardioplegia reduces myocardial metabolism during ischemia, adenosine triphosphate (ATP) depletion occurs, which may contribute to poor functional recovery after reperfusion. Augmenting myocardial adenosine during ischemia is successful in improving ATP repletion and myocardial recovery following ischemia. If adenosine is an important determinant of ischemic tolerance, then depletion o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of surgical research
دوره 49 3 شماره
صفحات -
تاریخ انتشار 1990